Abstract
We show a worst-case lower bound and a smoothed upper bound on the number of iterations performed by the iterative closest point (ICP) algorithm. First proposed by Besl and McKay, the algorithm is widely used in computational geometry where it is known for its simplicity and its observed speed. The theoretical study of ICP was initiated by Ezra, Sharir and Efrat, who bounded its worst-case running time between Omega(n log n) and O(n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> d) <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d</sup> . We substantially tighten this gap by improving the lower bound to Omega(n/d) <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d+1 </sup> . To help reconcile this bound with the algorithm's observed speed, we also show the smoothed complexity of ICP is polynomial, independent of the dimensionality of the data. Using similar methods, we improve the best known smoothed upper bound for the popular k-means method to n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">O(k)</sup> once again independent of the dimension
Keywords
Affiliated Institutions
Related Publications
Maximum distanceq-nary codes
A <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">q</tex> -nary error-correcting code with <tex xmlns:mml="http://www.w3.org/1998/...
On two or more dimensional optimum quantizers
It is hard to compute the performance of an N-level K-dimensional optimum quantizer <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink...
Asymptotically optimal block quantization
In 1948 W. R. Bennett used a companding model for nonuniform quantization and proposed the formula <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3...
Lower Bounds for the Partitioning of Graphs
Let a k-partition of a graph be a division of the vertices into k disjoint subsets containing m <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.or...
Achievable rates for multiple descriptions
Consider a sequence of independent identically distributed (i.i.d.) random variables <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlin...
Publication Info
- Year
- 2006
- Type
- article
- Pages
- 153-164
- Citations
- 60
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/focs.2006.79