Abstract

A longstanding goal for the treatment of hemophilia B is the development of a gene transfer strategy that can maintain sustained production of clotting factor IX (F.IX) in the absence of an immune response. To this end, we have sought to use lentiviral vectors (LVs) as a means for systemic gene transfer. Unfortunately, initial evaluation of LVs expressing F.IX from hepatocyte-specific promoters failed to achieve sustained F.IX expression in hemophilia B mice due to the induction of an anti-F.IX cellular immune response. Further analysis suggested that this may be a result of off-target transgene expression in hematopoietic-lineage cells of the spleen. In order to overcome this problem, we modified our vector to contain a target sequence for the hematopoietic-specific microRNA, miR-142-3p. This eliminated off-target expression in hematopoietic cells, and enabled sustained gene transfer in hemophilia B mice for more than 280 days after injection. Treated mice had more than 10% normal F.IX activity, no detectable anti-F.IX antibodies, and were unresponsive to F.IX immunization. Importantly, the mice survived tail-clip challenge, thus demonstrating phenotypic correction of their bleeding diathesis. This work, which is among the first applications to exploit the microRNA regulatory pathway, provides the basis for a promising new therapy for the treatment of hemophilia B.

Keywords

Factor IXGenetic enhancementViral vectorTransgeneHaematopoiesisBiologyBleeding diathesisSpleenmicroRNAImmune systemVector (molecular biology)ImmunologyCancer researchMolecular biologyStem cellGeneCell biologyGeneticsRecombinant DNAPlatelet

Affiliated Institutions

Related Publications

Publication Info

Year
2007
Type
article
Volume
110
Issue
13
Pages
4144-4152
Citations
248
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

248
OpenAlex

Cite This

Brian D. Brown, Alessio Cantore, Andrea Annoni et al. (2007). A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood , 110 (13) , 4144-4152. https://doi.org/10.1182/blood-2007-03-078493

Identifiers

DOI
10.1182/blood-2007-03-078493