Abstract

Identifying reliable biomarkers of aging is a major goal in geroscience. While the first generation of epigenetic biomarkers of aging were developed using chronological age as a surrogate for biological age, we hypothesized that incorporation of composite clinical measures of phenotypic age that capture differences in lifespan and healthspan may identify novel CpGs and facilitate the development of a more powerful epigenetic biomarker of aging. Using an innovative two-step process, we develop a new epigenetic biomarker of aging, DNAm PhenoAge, that strongly outperforms previous measures in regards to predictions for a variety of aging outcomes, including all-cause mortality, cancers, healthspan, physical functioning, and Alzheimer's disease. While this biomarker was developed using data from whole blood, it correlates strongly with age in every tissue and cell tested. Based on an in-depth transcriptional analysis in sorted cells, we find that increased epigenetic, relative to chronological age, is associated with increased activation of pro-inflammatory and interferon pathways, and decreased activation of transcriptional/translational machinery, DNA damage response, and mitochondrial signatures. Overall, this single epigenetic biomarker of aging is able to capture risks for an array of diverse outcomes across multiple tissues and cells, and provide insight into important pathways in aging.

Keywords

EpigeneticsBiomarkerdNaMBiologyDiseaseBiomarker discoveryDNA methylationBioinformaticsComputational biologyMedicineGeneticsProteomicsInternal medicineGeneGene expression

Affiliated Institutions

Related Publications

Publication Info

Year
2018
Type
article
Volume
10
Issue
4
Pages
573-591
Citations
3072
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

3072
OpenAlex

Cite This

Morgan E. Levine, Ake T. Lu, Austin Quach et al. (2018). An epigenetic biomarker of aging for lifespan and healthspan. Aging , 10 (4) , 573-591. https://doi.org/10.18632/aging.101414

Identifiers

DOI
10.18632/aging.101414