An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

Jianfang Liu , Tara M. Lichtenberg , Katherine A. Hoadley , Jianfang Liu , Tara M. Lichtenberg , Katherine A. Hoadley , Laila Poisson , Alexander J. Lazar , Andrew D. Cherniack , Albert J. Kovatich , Christopher C. Benz , Douglas A. Levine , Adrian V. Lee , Larsson Omberg , Denise M. Wolf , Craig D. Shriver , Vésteinn Thórsson , Hai Hu , Rory Johnson , John A. Demchok , Ina Felau , Melpomeni Kasapi , Martin L. Ferguson , Carolyn M. Hutter , Heidi J. Sofia , Roy Tarnuzzer , Linghua Wang , Liming Yang , Jean C. Zenklusen , Jiashan Zhang , Sudha Chudamani , Jia Liu , Laxmi Lolla , Rashi Naresh , Todd Pihl , Qiang Sun , Yunhu Wan , Ye Wu , Juok Cho , Timothy Defreitas , Scott Frazer , Nils Gehlenborg , Gad Getz , David I. Heiman , Jaegil Kim , Michael S. Lawrence , Pei Lin , Thomas J. Giordano , Michael S. Noble , Gordon Saksena , Doug Voet , Hailei Zhang , Brady Bernard , Nyasha Chambwe , Varsha Dhankani , Theo Knijnenburg , Roger Kramer , Kalle Leinonen , Yuexin Liu , Michael B. Miller , Sheila M. Reynolds , Ilya Shmulevich , Vésteinn Thórsson , Wei Zhang , Rehan Akbani , Bradley M. Broom , Apurva M. Hegde , Zhenlin Ju , Rupa S. Kanchi , Anil Korkut , Jun Li , Han Liang , Shiyun Ling , Wenbin Liu , Yiling Lu , Gordon B. Mills , Kwok-Shing Ng , Arvind Rao , Michael Ryan , Jing Wang , John N. Weinstein , Jiexin Zhang , Adam Abeshouse , Joshua Armenia , Debyani Chakravarty , Walid K. Chatila , Ino de Bruijn , Galen F. Gao , Benjamin E. Gross , Zachary Heins , Ritika Kundra , Konnor La , Marc Ladanyi , Augustin Luna , Moriah G. Nissan , Angelica Ochoa , Sarah Phillips , Ed Reznik , Francisco Sánchez-Vega , Chris Sander , Nikolaus Schultz , Robert E. Sheridan , S. Onur Sumer
2018 Cell 3,655 citations

Abstract

For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale.

Keywords

BiologyAnalyticsOutcome (game theory)Resource (disambiguation)BioinformaticsInternal medicineOncologyData scienceComputer science

Affiliated Institutions

Related Publications

Publication Info

Year
2018
Type
article
Volume
173
Issue
2
Pages
400-416.e11
Citations
3655
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

3655
OpenAlex

Cite This

Jianfang Liu, Tara M. Lichtenberg, Katherine A. Hoadley et al. (2018). An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell , 173 (2) , 400-416.e11. https://doi.org/10.1016/j.cell.2018.02.052

Identifiers

DOI
10.1016/j.cell.2018.02.052