Abstract
An empirical many-body potential-energy expression is developed for hydrocarbons that can model intramolecular chemical bonding in a variety of small hydrocarbon molecules as well as graphite and diamond lattices. The potential function is based on Tersoff's covalent-bonding formalism with additional terms that correct for an inherent overbinding of radicals and that include nonlocal effects. Atomization energies for a wide range of hydrocarbon molecules predicted by the potential compare well to experimental values. The potential correctly predicts that the \ensuremath{\pi}-bonded chain reconstruction is the most stable reconstruction on the diamond {111} surface, and that hydrogen adsorption on a bulk-terminated surface is more stable than the reconstruction. Predicted energetics for the dimer reconstructed diamond {100} surface as well as hydrogen abstraction and chemisorption of small molecules on the diamond {111} surface are also given. The potential function is short ranged and quickly evaluated so it should be very useful for large-scale molecular-dynamics simulations of reacting hydrocarbon molecules.
Keywords
Affiliated Institutions
Related Publications
Calculated Binding Properties of Hydrogen on Nickel Surfaces
An extremely simple calculational method based on the effective medium theory is developed to describe chemisorption systems. It is tested for hydrogen chemisorbed on Ni(100) an...
Atomistic modelling of CVD synthesis of carbon nanotubes and graphene
We discuss the synthesis of carbon nanotubes (CNTs) and graphene by catalytic chemical vapour deposition (CCVD) and plasma-enhanced CVD (PECVD), summarising the state-of-the-art...
Properties of amorphous carbon–silicon alloys deposited by a high plasma density source
The addition of silicon to hydrogenated amorphous carbon can have the advantageous effect of lowering the compressive stress, improving the thermal stability of its hydrogen, an...
Chemisorption bonding, site preference, and chain formation at the K/Si(001)<i>2×1</i>interface
A variety of possible chemisorption models has been investigated for the K/Si(001)2×1 interface by use of the local-density formalism and the discrete variational method to carr...
Free-standing subnanometer graphite sheets
Free-standing graphite sheets with thickness less than 1nm, “carbon nanosheets,” were synthesized on a variety of substrates by radio-frequency plasma-enhanced chemical vapor de...
Publication Info
- Year
- 1990
- Type
- article
- Volume
- 42
- Issue
- 15
- Pages
- 9458-9471
- Citations
- 3986
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevb.42.9458