Maximum-likelihood estimation in non-standard conditions

1971 Mathematical Proceedings of the Cambridge Philosophical Society 172 citations

Abstract

The origin of the present paper is the desire to study the asymptotic behaviour of certain tests of significance which can be based on maximum-likelihood estimators. The standard theory of such problems (e.g. Wald(4)) assumes, sometimes tacitly, that the parameter point corresponding to the null hypothesis lies inside an open set in the parameter space. Here we wish to study what happens when the true parameter point, in estimation problems, lies on the boundary of the parameter space.

Keywords

Parameter spaceEstimatorMathematicsMaximum likelihoodEstimation theoryNull hypothesisPoint (geometry)Point estimationSpace (punctuation)Score testBoundary (topology)Applied mathematicsNull (SQL)Wald testRestricted maximum likelihoodSet (abstract data type)StatisticsStatistical hypothesis testingMathematical analysisComputer scienceGeometry

Affiliated Institutions

Related Publications

On the Distribution of the Likelihood Ratio

A classical result due to Wilks [1] on the distribution of the likelihood ratio $\\lambda$ is the following. Under suitable regularity conditions, if the hypothesis that a param...

1954 The Annals of Mathematical Statistics 780 citations

Applied Missing Data Analysis

Part 1. An Introduction to Missing Data. 1.1 Introduction. 1.2 Chapter Overview. 1.3 Missing Data Patterns. 1.4 A Conceptual Overview of Missing Data heory. 1.5 A More Formal De...

2010 6888 citations

Publication Info

Year
1971
Type
article
Volume
70
Issue
3
Pages
441-450
Citations
172
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

172
OpenAlex

Cite This

P. A. P. Moran (1971). Maximum-likelihood estimation in non-standard conditions. Mathematical Proceedings of the Cambridge Philosophical Society , 70 (3) , 441-450. https://doi.org/10.1017/s0305004100050088

Identifiers

DOI
10.1017/s0305004100050088