Abstract

In this article, the excellent properties of state-of-the-art Cd-free Cu(In,Ga)(Se,S) <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> (CIGSSe) solar cells with Zn(O,S,OH) <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> /Zn <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.8</sub> Mg <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.2</sub> O double buffer layers, deposited by a combination of chemical bath deposition and atomic layer deposition techniques, are presented. By the replacement of conventional CdS buffer layers with this double buffer layer, the open-circuit voltage (V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">oc</sub> ) deficit of the devices could be significantly reduced, and V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">oc</sub> increased by approximately 15 mV. In addition, the fill factor and short-circuit current were also improved, increasing the device efficiency by approximately 0.5 absolute percent compared with devices with CdS buffers. The Cd-free double buffer layer improved the device efficiency regardless of the bandgap of the CIGSSe absorber. The minority carrier lifetime (τ) measured via time-resolved photoluminescence became longer, indicating that carrier recombination is mitigated using the double buffer layer. Based on the device parameters extracted by fitting the Suns-V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">oc</sub> characteristics to the double-diode model, the longer τ could be attributed to the decreased recombination rate in the space-charge region, rather than in the bulk and at the interface. The best performing cell was evaluated by a reliable third party, the National Institute of Advanced Industrial Science and Technology; this cell achieved a new world record efficiency of 23.35% for 1-cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> -sized thin-film polycrystalline solar cells. The device parameters of this cell are also discussed in this article.

Keywords

Layer (electronics)Materials scienceAnalytical Chemistry (journal)PhysicsChemistryNanotechnologyOrganic chemistry

Affiliated Institutions

Related Publications

Maximum distanceq-nary codes

A <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">q</tex> -nary error-correcting code with <tex xmlns:mml="http://www.w3.org/1998/...

1964 IEEE Transactions on Information Theory 508 citations

Publication Info

Year
2019
Type
article
Volume
9
Issue
6
Pages
1863-1867
Citations
1212
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

1212
OpenAlex

Cite This

Motoshi Nakamura, Koji Yamaguchi, Yoshinori Kimoto et al. (2019). Cd-Free Cu(In,Ga)(Se,S)<sub>2</sub> Thin-Film Solar Cell With Record Efficiency of 23.35%. IEEE Journal of Photovoltaics , 9 (6) , 1863-1867. https://doi.org/10.1109/jphotov.2019.2937218

Identifiers

DOI
10.1109/jphotov.2019.2937218